Dissociable Roles of Cerebral μ-Opioid and Type 2 Dopamine Receptors in Vicarious Pain: A Combined PET-fMRI Study.
نویسندگان
چکیده
Neuroimaging studies have shown that seeing others in pain activates brain regions that are involved in first-hand pain, suggesting that shared neuromolecular pathways support processing of first-hand and vicarious pain. We tested whether the dopamine and opioid neurotransmitter systems involved in nociceptive processing also contribute to vicarious pain experience. We used in vivo positron emission tomography to quantify type 2 dopamine and μ-opioid receptor (D2R and MOR, respectively) availabilities in brains of 35 subjects. During functional magnetic resonance imaging, the subjects watched short movie clips depicting persons in painful and painless situations. Painful scenes activated pain-responsive brain regions including anterior insulae, thalamus and secondary somatosensory cortices, as well as posterior superior temporal sulci. MOR availability correlated negatively with the haemodynamic responses during painful scenes in anterior and posterior insulae, thalamus, secondary and primary somatosensory cortices, primary motor cortex, and superior temporal sulci. MOR availability correlated positively with orbitofrontal haemodynamic responses during painful scenes. D2R availability was not correlated with the haemodynamic responses in any brain region. These results suggest that the opioid system contributes to neural processing of vicarious pain, and that interindividual differences in opioidergic system could explain why some individuals react more strongly than others to seeing pain.
منابع مشابه
An Experimental Study on Spinal Cord µ-Opioid and α2-Adrenergic Receptors mRNA Expression Following Stress-Induced Hyperalgesia in Male Rats
Background: Intense stress can change pain perception and induce hyperalgesia; a phenomenon called stress-induced hyperalgesia (SIH). However, the neurobiological mechanism of this effect remains unclear. The present study aimed to investigate the effect of the spinal cord µ-opioid receptors (MOR) and α2-adrenergic receptors (α2-AR) on pain sensation in rats with SIH. Methods: Eighteen Sprague-...
متن کاملEndogenous opioid-dopamine neurotransmission underlie negative CBV fMRI signals.
Previous studies showed noxious unilateral forepaw electrical stimulation surprisingly evoked negative blood-oxygenation-level-dependent (BOLD), cerebral blood flow (CBF), and cerebral blood volume (CBV) fMRI responses in the bilateral striatum whereas the local neuronal spike and c-Fos activities increased. These negative responses are associated with vasoconstriction and appeared to override ...
متن کاملMechanisms underlying δ- and μ-opioid receptor agonist-induced increases in extracellular dopamine level in the nucleus accumbens of freely moving rats.
The nucleus accumbens is a terminal area of the mesolimbic dopaminergic system that arises in the ventral tegmental area. Opioids are thought to enhance dopaminergic activity in the nucleus accumbens by activating δ- and μ-opioid receptors in the ventral tegmental area. However, δ- and μ-opioid receptor agonists increase extracellular levels of accumbal dopamine when infused directly into the n...
متن کاملEffects of intracerebroventricular injection of vitamin B12 on formalin-induced muscle pain in rats: Role of cyclooxygenase pathway and opioid receptors
Vitamin B12 modulates pain at the local and peripheral levels. This study has investigated the effects of intracerebroventricular (ICV) injection of vitamin B12 on themuscle pain. We used diclofenac (cyclooxygenase inhibitor) and naloxone (opioid receptors antagonist) to clarify the possible mechanisms. For ICV injections, a guide cannula was implanted in the left lateral ...
متن کاملRole of μ-opioid receptor in parafascicular nucleus of thalamus on morphine-induced antinociception in a rat model of acute trigeminal pain
The parafascicular nucleus (PFN) of thalamus, as a supraspinal structure, has an important role in processing of nociceptive information. In addition, μ-opioid receptor contributes to supraspinal modulation of nociception. In the present study, the effects of microinjection of naloxone (a non-specific opioid-receptor antagonist) and naloxonazine (a specific μ-opioid receptor antagonist) were in...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Cerebral cortex
دوره 27 8 شماره
صفحات -
تاریخ انتشار 2017